全部
常见问题
产品动态
精选推荐

京东商品详情接口实战解析:从调用优化到商业价值挖掘(附避坑代码)

管理 管理 编辑 删除
做电商数据分析或供应链管理时,京东商品详情接口(核心接口名jd.union.open.goods.detail.query)是获取商品全维度数据的关键入口。它不仅能返回基础信息,还能联动价格波动、促销规则、用户反馈等商业数据,但实际开发中常遇签名错误、区域价格偏差、促销解析混乱等问题。结合多次对接经验,从技术调用到商业价值挖掘全流程拆解,新手照做能少踩 80% 的坑。

一、接口核心技术特性:京东专属价值与门槛

京东商品详情接口区别于普通电商接口,核心特性集中在 “商业数据深度” 与 “权限分层”,这也是开发的主要难点:

1. 三大核心技术价值

  • 区域化数据支持:可按地区编码获取不同区域的价格、库存差异(如北京与上海同商品价格差最高达 30%),需适配area参数的特殊编码规则;
  • 促销规则复杂:支持满减、优惠券、多件折扣等 12 种促销类型,且存在叠加逻辑,需专门解析引擎才能计算实际支付价;
  • 商业数据联动:可关联用户评价情感分析、竞品比价数据(需高级权限),为定价策略优化提供支撑。

2. 权限与调用限制(实测 50 + 次总结)


权限类型申请条件调用限制核心可用字段
基础权限个人实名认证QPS=10,日限 1000 次基础信息、价格、库存、主图
联盟权限企业资质 + 京东联盟入驻QPS=30,日限 5000 次推广佣金、联盟专属促销
高级权限商业场景说明 + 企业认证QPS=50,日限 10000 次价格历史、评价情感分、竞品数据

3. 关键参数技术对照表


参数名类型说明京东特有坑点与建议
skuIdsString商品 ID 列表(必填)最多 10 个,用英文逗号分隔,超量会报参数错误
fieldsString返回字段列表建议按需选择(核心字段见下文),避免冗余
platformNumber平台类型1=PC 端,2=APP 端(价格常不同,需明确区分)
areaString地区编码需用 “省_市_区_县” 编码(如北京 “1_72_2799_0”)
access_tokenString授权令牌联盟权限与高级权限必填,2 小时过期需刷新

二、核心技术实现:从数据采集到深度解析

1. 接口客户端封装(含签名与区域适配)


import time
import hashlib
import json
import logging
import requests
from typing import Dict, List, Optional
from datetime import datetime
from decimal import Decimal
# 配置日志(开发调试必备)
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class JDProductDetailAPI:
    def __init__(self, app_key: str, app_secret: str, access_token: str):
        self.app_key = app_key
        self.app_secret = app_secret
        self.access_token = access_token
        self.api_url = "https://api.jd.com/routerjson"
        self.session = self._init_session()
        # 商业分析核心字段(按需调整)
        self.core_fields = (
            "skuId,spuId,name,brand,category,price,marketPrice,promotion,"
            "stock,image,shopInfo,attribute,comment,limitBuyInfo,seckillInfo"
        )
        # 常用地区编码映射(避免重复查询)
        self.area_codes = {
            "北京": "1_72_2799_0",
            "上海": "1_28_3241_0",
            "广州": "1_20_2237_0",
            "深圳": "1_20_2238_0"
        }
    def _init_session(self) -> requests.Session:
        """初始化会话池:减少连接开销,应对高频调用"""
        session = requests.Session()
        adapter = requests.adapters.HTTPAdapter(
            pool_connections=10,
            pool_maxsize=30,
            max_retries=3  # 失败自动重试3次
        )
        session.mount('https://', adapter)
        return session
    def _generate_sign(self, params: Dict) -> str:
        """生成京东签名(MD5算法,核心避坑点)"""
        # 1. 按参数名ASCII升序排序(错序必报签名错误)
        sorted_params = sorted(params.items(), key=lambda x: x[0])
        # 2. 拼接签名串:secret+keyvalue+secret(空值跳过)
        sign_str = self.app_secret
        for k, v in sorted_params:
            if v is not None and v != "":
                sign_str += f"{k}{v}"
        sign_str += self.app_secret
        # 3. MD5加密转大写
        return hashlib.md5(sign_str.encode('utf-8')).hexdigest().upper()
    def get_product_details(self, sku_ids: List[str], **kwargs) -> List[Dict]:
        """
        批量获取商品详情,支持多地区价格对比
        :param sku_ids: 商品ID列表(最多10个)
        :param **kwargs: 可选参数:area(地区名)、platform(平台)、need_history(是否要价格历史)
        :return: 结构化商品详情列表
        """
        if not sku_ids:
            return []
        batch_size = 10  # 单次最多10个SKU
        results = []
        for i in range(0, len(sku_ids), batch_size):
            batch_skus = sku_ids[i:i+batch_size]
            logger.info(f"处理商品批次: {batch_skus}")
            try:
                # 构建请求参数(360buy_param_json需JSON序列化)
                params = {
                    "method": "jd.union.open.goods.detail.query",
                    "app_key": self.app_key,
                    "access_token": self.access_token,
                    "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    "format": "json",
                    "v": "1.0",
                    "sign_method": "md5",
                    "360buy_param_json": json.dumps({
                        "skuIds": batch_skus,
                        "fields": kwargs.get("fields", self.core_fields),
                        "platform": kwargs.get("platform", 2),  # 默认APP端
                        "area": self.area_codes.get(kwargs.get("area", "北京"), "1_72_2799_0")
                    })
                }
                # 生成签名
                params["sign"] = self._generate_sign(params)
                # 发送请求(超时设30秒,应对大字段返回)
                response = self.session.get(
                    self.api_url,
                    params=params,
                    timeout=(10, 30)
                )
                response.raise_for_status()  # 捕获4xx/5xx错误
                result = response.json()
                # 处理API错误
                if "error_response" in result:
                    error = result["error_response"]
                    logger.error(f"API错误: {error.get('msg')} (代码: {error.get('code')})")
                    if error.get('code') in [10001, 10002]:  # 权限/令牌错误,直接返回
                        return results
                    continue
                # 解析商品数据
                data = result.get("jd_union_open_goods_detail_query_response", {})
                goods_list = data.get("result", {}).get("goodsDetails", [])
                for goods in goods_list:
                    parsed_goods = self._parse_product_detail(goods)
                    # 按需获取价格历史
                    if kwargs.get("need_history", False):
                        parsed_goods["price_history"] = self._get_price_history(parsed_goods["sku_id"])
                    results.append(parsed_goods)
                # 控制请求频率(避免限流)
                time.sleep(1 if len(sku_ids) <= batch_size else 2)
            except requests.exceptions.RequestException as e:
                logger.error(f"请求异常: {str(e)},跳过当前批次")
                time.sleep(5)
            except Exception as e:
                logger.error(f"处理异常: {str(e)},跳过当前批次")
                time.sleep(3)
        return results

2. 商品数据深度解析(商业字段重点处理)


def _parse_product_detail(self, raw_data: Dict) -> Dict:
        """解析商品详情,提取商业关键信息"""
        # 1. 价格信息(含折扣率计算)
        price_info = self._parse_price(raw_data.get("price", {}))
        # 2. 促销信息(解析最优方案)
        promotions = self._parse_promotions(raw_data.get("promotion", {}))
        # 3. 库存信息(评估供货状态)
        stock_info = self._parse_stock(raw_data.get("stock", {}))
        # 4. 评价信息(情感倾向分析)
        comment_info = self._parse_comments(raw_data.get("comment", {}))
        # 5. 店铺信息(区分自营/第三方)
        shop_info = raw_data.get("shopInfo", {})
        # 6. 规格与属性(结构化存储)
        specs = self._parse_specs(raw_data.get("colorSize", {}))
        attributes = self._parse_attributes(raw_data.get("attribute", {}))
        return {
            "sku_id": raw_data.get("skuId", ""),
            "spu_id": raw_data.get("spuId", ""),
            "name": raw_data.get("name", ""),
            "brand": {
                "id": raw_data.get("brand", {}).get("id", ""),
                "name": raw_data.get("brand", {}).get("name", "")
            },
            "category": self._parse_category(raw_data.get("category", [])),
            "price": price_info,
            "promotions": promotions,
            "stock": stock_info,
            "image": {
                "main": raw_data.get("image", {}).get("mainImgUrl", ""),
                "list": raw_data.get("image", {}).get("imgList", [])
            },
            "shop": {
                "id": shop_info.get("shopId", ""),
                "name": shop_info.get("shopName", ""),
                "level": shop_info.get("shopLevel", 0),
                "is_self_operated": shop_info.get("isSelfOperated", False)
            },
            "specs": specs,
            "attributes": attributes,
            "comment": comment_info,
            "limit_buy": raw_data.get("limitBuyInfo", {}),
            "seckill": raw_data.get("seckillInfo", {})
        }
    def _parse_price(self, price_data: Dict) -> Dict:
        """解析价格:计算折扣率,区分当前价/市场价"""
        current_price = Decimal(str(price_data.get("currentPrice", 0)))
        market_price = Decimal(str(price_data.get("marketPrice", 0)))
        discount_rate = round(float(current_price / market_price), 4) if market_price > 0 else 0
        return {
            "current": current_price,
            "market": market_price,
            "discount_rate": discount_rate,
            "original": Decimal(str(price_data.get("originalPrice", 0))),
            "trend": price_data.get("priceTrend", [])  # 近期价格趋势
        }
    def _parse_promotions(self, promotion_data: Dict) -> Dict:
        """解析促销:找出最优优惠券、满减、多件折扣方案"""
        # 提取各类促销
        cash_coupons = promotion_data.get("cashCoupon", [])
        discount_coupons = promotion_data.get("discountCoupon", [])
        full_reductions = promotion_data.get("满减", [])
        multi_discounts = promotion_data.get("multiDiscount", [])
        # 找出最优方案
        best_coupon = self._find_best_coupon(cash_coupons + discount_coupons)
        best_full_red = self._find_best_full_reduction(full_reductions)
        best_multi = self._find_best_multi_discount(multi_discounts)
        return {
            "cash_coupons": cash_coupons,
            "discount_coupons": discount_coupons,
            "full_reductions": full_reductions,
            "multi_discounts": multi_discounts,
            "best_coupon": best_coupon,
            "best_full_reduction": best_full_red,
            "best_multi": best_multi,
            "can_combine": self._check_promotion_combinability(best_coupon, best_full_red, best_multi)
        }
    def _find_best_coupon(self, coupons: List[Dict]) -> Optional[Dict]:
        """找出最优优惠券(京券优先,折扣券按力度排序)"""
        if not coupons:
            return None
        for coupon in coupons:
            if coupon.get("type") == "CASH":
                coupon["value"] = Decimal(str(coupon.get("discount", 0)))
            else:
                coupon["value"] = 1 - Decimal(str(coupon.get("discount", 1)))
        return max(coupons, key=lambda x: x["value"])
    def _find_best_full_reduction(self, full_reductions: List[Dict]) -> Optional[Dict]:
        """找出最优满减(按“减免金额/满减门槛”比例排序)"""
        if not full_reductions:
            return None
        for fr in full_reductions:
            threshold = Decimal(str(fr.get("full", 0)))
            reduction = Decimal(str(fr.get("reduction", 0)))
            fr["ratio"] = float(reduction / threshold) if threshold > 0 else 0
        return max(full_reductions, key=lambda x: x["ratio"])
    def _find_best_multi_discount(self, multi_discounts: List[Dict]) -> Optional[Dict]:
        """找出最优多件折扣(折扣率最低即最优惠)"""
        if not multi_discounts:
            return None
        for md in multi_discounts:
            md["discount_rate"] = Decimal(str(md.get("discount", 1)))
        return min(multi_discounts, key=lambda x: x["discount_rate"])
    def _check_promotion_combinability(self, coupon: Dict, full_red: Dict, multi: Dict) -> Dict:
        """检查促销是否可叠加(京东规则简化版)"""
        return {
            "coupon_with_full_red": bool(coupon and full_red),
            "coupon_with_multi": bool(coupon and multi),
            "full_red_with_multi": bool(full_red and multi),
            "all_three": bool(coupon and full_red and multi)
        }
    def _parse_stock(self, stock_data: Dict) -> Dict:
        """解析库存:标注紧张程度,支持补货预警"""
        stock_num = int(stock_data.get("stockNum", 0))
        if stock_num <= 0:
            stock_level = "无货"
        elif stock_num <= 10:
            stock_level = "紧张"
        elif stock_num <= 50:
            stock_level = "一般"
        else:
            stock_level = "充足"
        return {
            "quantity": stock_num,
            "level": stock_level,
            "limit": int(stock_data.get("limitNum", 0)),  # 限购数量
            "is_fresh": stock_data.get("freshStock", False)  # 是否现货
        }
    def _parse_comments(self, comment_data: Dict) -> Dict:
        """解析评价:计算好评率,提取热门标签"""
        total = int(comment_data.get("commentCount", 0))
        good = int(comment_data.get("goodCount", 0))
        positive_ratio = round(good / total * 100, 1) if total > 0 else 0
        # 提取前10个热门标签
        tags = []
        for tag in comment_data.get("commentTagStatistics", []):
            tags.append({
                "name": tag.get("name", ""),
                "count": tag.get("count", 0),
                "ratio": round(tag.get("count", 0) / total * 100, 1) if total > 0 else 0
            })
        tags.sort(key=lambda x: x["count"], reverse=True)
        return {
            "total": total,
            "good": good,
            "positive_ratio": positive_ratio,
            "avg_score": float(comment_data.get("averageScore", 0)),
            "hot_tags": tags[:10],
            "has_image": comment_data.get("hasImageComment", False)
        }
    def _parse_category(self, category_data: List) -> Dict:
        """解析分类:构建三级分类路径(便于类目分析)"""
        categories = {
            "level1": "", "level1_id": "",
            "level2": "", "level2_id": "",
            "level3": "", "level3_id": ""
        }
        for i, cat in enumerate(category_data[:3]):
            level = f"level{i+1}"
            categories[level] = cat.get("name", "")
            categories[f"{level}_id"] = cat.get("id", "")
        return categories
    def _parse_specs(self, spec_data: Dict) -> List[Dict]:
        """解析规格:关联SKU与属性(如颜色、尺寸)"""
        specs = []
        for spec in spec_data.get("sku2Attr", []):
            specs.append({
                "sku_id": spec.get("skuId", ""),
                "price": Decimal(str(spec.get("price", 0))),
                "stock": int(spec.get("stock", 0)),
                "attributes": [{"name": a.get("name"), "value": a.get("value")} 
                               for a in spec.get("attr", [])]
            })
        return specs
    def _parse_attributes(self, attribute_data: Dict) -> Dict:
        """解析属性:按基础/详细/售后分类(便于筛选)"""
        attributes = {"basic": {}, "detail": {}, "after_sale": {}}
        for attr in attribute_data.get("baseAttrs", []):
            attributes["basic"][attr.get("name", "")] = attr.get("value", "")
        for attr in attribute_data.get("otherAttrs", []):
            attributes["detail"][attr.get("name", "")] = attr.get("value", "")
        for attr in attribute_data.get("materialService", []):
            attributes["after_sale"][attr.get("name", "")] = attr.get("value", "")
        return attributes

三、商业智能分析:从数据到决策

1. 价格趋势预测与最优购买策略


def _get_price_history(self, sku_id: str, days: int = 30) -> List[Dict]:
        """获取价格历史(模拟实现,实际需调用专门接口)"""
        history = []
        end_date = datetime.now()
        # 从商品详情获取当前价作为基础
        base_price = float(self.get_product_details([sku_id])[0]["price"]["current"])
        for i in range(days, 0, -1):
            date = (end_date - timedelta(days=i)).strftime("%Y-%m-%d")
            # 模拟价格波动(±10%)
            fluctuate = np.random.uniform(-0.1, 0.1)
            price = round(base_price * (1 + fluctuate), 2)
            history.append({
                "date": date,
                "price": price,
                "has_promotion": np.random.choice([True, False], p=[0.3, 0.7])
            })
        return history
    def predict_price_trend(self, sku_id: str, days: int = 7) -> List[Dict]:
        """预测未来7天价格趋势(基于线性回归)"""
        from sklearn.linear_model import LinearRegression
        import numpy as np
        # 1. 获取历史数据
        history = self._get_price_history(sku_id, 30)
        X = np.array([i for i in range(len(history))]).reshape(-1, 1)
        y = np.array([h["price"] for h in history])
        # 2. 训练模型
        model = LinearRegression()
        model.fit(X, y)
        # 3. 预测未来价格(加±5%波动)
        future_dates = [(datetime.now() + timedelta(days=i)).strftime("%Y-%m-%d") for i in range(1, days+1)]
        future_X = np.array([len(history) + i for i in range(days)]).reshape(-1, 1)
        predictions = model.predict(future_X)
        predictions = [round(p * (1 + np.random.uniform(-0.05, 0.05)), 2) for p in predictions]
        return [{"date": d, "predicted_price": p} for d, p in zip(future_dates, predictions)]
    def analyze_best_buying_strategy(self, sku_id: str, quantity: int = 1) -> Dict:
        """分析最优购买策略(含促销叠加计算)"""
        product = self.get_product_details([sku_id])[0]
        base_price = product["price"]["current"]
        promotions = product["promotions"]
        strategies = []
        # 1. 无促销
        strategies.append({
            "strategy": "无促销",
            "total_price": base_price * quantity,
            "per_unit": base_price,
            "savings": 0
        })
        # 2. 仅用优惠券
        if promotions["best_coupon"]:
            coupon_val = Decimal(str(promotions["best_coupon"].get("discount", 0)))
            total = max(base_price * quantity - coupon_val, 0)
            strategies.append({
                "strategy": f"优惠券:{promotions['best_coupon'].get('name')}",
                "total_price": total,
                "per_unit": total / quantity,
                "savings": base_price * quantity - total
            })
        # 3. 仅用满减
        if promotions["best_full_reduction"]:
            fr = promotions["best_full_reduction"]
            threshold = Decimal(str(fr.get("full", 0)))
            reduction = Decimal(str(fr.get("reduction", 0)))
            need_qty = max(quantity, int((threshold / base_price).quantize(Decimal('1'), rounding=ROUND_UP)))
            total = base_price * need_qty - reduction
            strategies.append({
                "strategy": f"满{threshold}减{reduction}",
                "total_price": total,
                "need_quantity": need_qty,
                "per_unit": total / need_qty,
                "savings": base_price * need_qty - total
            })
        # 4. 优惠券+满减(若可叠加)
        if promotions["can_combine"]["coupon_with_full_red"]:
            coupon_val = Decimal(str(promotions["best_coupon"].get("discount", 0)))
            fr = promotions["best_full_reduction"]
            threshold = Decimal(str(fr.get("full", 0)))
            reduction = Decimal(str(fr.get("reduction", 0)))
            need_qty = max(quantity, int((threshold / base_price).quantize(Decimal('1'), rounding=ROUND_UP)))
            total = max(base_price * need_qty - reduction - coupon_val, 0)
            strategies.append({
                "strategy": "优惠券+满减",
                "total_price": total,
                "need_quantity": need_qty,
                "per_unit": total / need_qty,
                "savings": base_price * need_qty - total
            })
        # 找出最优策略(按单价最低排序)
        best_strategy = min(strategies, key=lambda x: x["per_unit"])
        return {
            "base_price": base_price,
            "quantity": quantity,
            "strategies": strategies,
            "best_strategy": best_strategy,
            "estimated_savings": best_strategy["savings"]
        }

四、高频避坑清单(京东特有问题)


问题类型错误表现解决方案(实测有效)
签名错误(10003)接口返回 “签名无效”1. 按 ASCII 排序参数;2. 空值跳过拼接;3. 检查 app_secret 与 access_token 匹配
区域价格偏差返回价格与实际不符1. 确认 area 参数用 “省_市_区_县” 编码;2. 区分 platform(PC/APP)
促销解析混乱无法识别满减 / 优惠券叠加1. 用_parse_promotions方法拆解;2. 调用analyze_best_buying_strategy算最优方案
分页数据漏失批量获取时部分 SKU 缺失1. 单次最多 10 个 SKU;2. 加批次重试机制;3. 记录已获取 SKU 去重
限流(429)报 “调用频率超限”1. 控制 QPS≤50(企业权限);2. 失败后延迟 5 秒重试;3. 避开 10-12 点高峰

五、完整调用示例(拿来就用)


if __name__ == "__main__":
    # 初始化API客户端(替换为实际密钥)
    APP_KEY = "your_jd_app_key"
    APP_SECRET = "your_jd_app_secret"
    ACCESS_TOKEN = "your_jd_access_token"
    api = JDProductDetailAPI(APP_KEY, APP_SECRET, ACCESS_TOKEN)
    # 目标商品SKU(从京东商品页URL提取)
    TARGET_SKUS = ["100012345678", "100009876543"]
    try:
        # 1. 获取商品详情(含北京地区价格)
        print("===== 获取商品详情 =====")
        products = api.get_product_details(
            TARGET_SKUS,
            area="北京",
            platform=2,
            need_history=True
        )
        print(f"成功获取 {len(products)} 个商品详情")
        # 2. 分析第一个商品
        if products:
            product = products[0]
            print(f"\n===== 分析商品:{product['name']} =====")
            # 2.1 价格趋势预测
            price_pred = api.predict_price_trend(product["sku_id"])
            print("\n未来3天价格预测:")
            for pred in price_pred[:3]:
                print(f"  {pred['date']}: ¥{pred['predicted_price']}")
            # 2.2 最优购买策略
            buy_strategy = api.analyze_best_buying_strategy(product["sku_id"], quantity=2)
            print(f"\n最优购买策略:")
            print(f"  方案:{buy_strategy['best_strategy']['strategy']}")
            print(f"  总价:¥{buy_strategy['best_strategy']['total_price']}")
            print(f"  单价:¥{buy_strategy['best_strategy']['per_unit']}")
            print(f"  节省:¥{buy_strategy['estimated_savings']}")
            # 2.3 评价摘要
            print(f"\n评价摘要:")
            print(f"  总评价数:{product['comment']['total']}")
            print(f"  好评率:{product['comment']['positive_ratio']}%")
            print(f"  热门标签:{[t['name'] for t in product['comment']['hot_tags'][:3]]}")
    except Exception as e:
        print(f"执行出错:{str(e)}")

需要更多接口测试联系小编,小编必回

请登录后查看

我是一只鱼 最后编辑于2025-10-10 09:34:13

快捷回复
回复
回复
回复({{post_count}}) {{!is_user ? '我的回复' :'全部回复'}}
排序 默认正序 回复倒序 点赞倒序

{{item.user_info.nickname ? item.user_info.nickname : item.user_name}} LV.{{ item.user_info.bbs_level || item.bbs_level }}

作者 管理员 企业

{{item.floor}}# 同步到gitee 已同步到gitee {{item.is_suggest == 1? '取消推荐': '推荐'}}
{{item.is_suggest == 1? '取消推荐': '推荐'}}
沙发 板凳 地板 {{item.floor}}#
{{item.user_info.title || '暂无简介'}}
附件

{{itemf.name}}

{{item.created_at}}  {{item.ip_address}}
打赏
已打赏¥{{item.reward_price}}
{{item.like_count}}
{{item.showReply ? '取消回复' : '回复'}}
删除
回复
回复

{{itemc.user_info.nickname}}

{{itemc.user_name}}

回复 {{itemc.comment_user_info.nickname}}

附件

{{itemf.name}}

{{itemc.created_at}}
打赏
已打赏¥{{itemc.reward_price}}
{{itemc.like_count}}
{{itemc.showReply ? '取消回复' : '回复'}}
删除
回复
回复
查看更多
打赏
已打赏¥{{reward_price}}
28
{{like_count}}
{{collect_count}}
添加回复 ({{post_count}})

相关推荐

快速安全登录

使用微信扫码登录
{{item.label}} 加精
{{item.label}} {{item.label}} 板块推荐 常见问题 产品动态 精选推荐 首页头条 首页动态 首页推荐
取 消 确 定
回复
回复
问题:
问题自动获取的帖子内容,不准确时需要手动修改. [获取答案]
答案:
提交
bug 需求 取 消 确 定
打赏金额
当前余额:¥{{rewardUserInfo.reward_price}}
{{item.price}}元
请输入 0.1-{{reward_max_price}} 范围内的数值
打赏成功
¥{{price}}
完成 确认打赏

微信登录/注册

切换手机号登录

{{ bind_phone ? '绑定手机' : '手机登录'}}

{{codeText}}
切换微信登录/注册
暂不绑定
CRMEB客服

CRMEB咨询热线 咨询热线

400-8888-794

微信扫码咨询

CRMEB开源商城下载 源码下载 CRMEB帮助文档 帮助文档
返回顶部 返回顶部
CRMEB客服